This page is a placeholder. All examples on this page are currently AI-generated and are not correct. This documentation will be completed in the future with accurate, tested examples.
Overview
Address: 0x0000000000000000000000000000000000000008
Introduced: Byzantium (EIP-197)
EIP: EIP-197, EIP-1108
The BN254 Pairing precompile performs a pairing check on the BN254 (alt_bn128) elliptic curve. It verifies whether a product of pairings equals the identity element: e(A1,B1) * e(A2,B2) * ... * e(Ak,Bk) = 1. This is the fundamental cryptographic operation for Groth16 zkSNARK verification, enabling zero-knowledge proofs on Ethereum.
A pairing is a special bilinear map that takes two elliptic curve points (one from group G1, one from group G2) and produces a value in a third group GT. The bilinear property means e(aP, bQ) = e(P, Q)^(ab), which is what makes zero-knowledge proofs mathematically possible. Think of it as a one-way function that lets you verify relationships between encrypted values without decrypting them.
EIP-1108 (Istanbul hardfork) reduced gas costs by 56-57%, making zkSNARK verification practical for production applications like Tornado Cash and zk-rollups.
Gas Cost
Formula: 45000 + 34000 * k where k = number of point pairs
Examples:
- Empty input (k=0): 45,000 gas
- 1 pair: 79,000 gas
- 2 pairs: 113,000 gas
- 4 pairs: 181,000 gas
Pre-Istanbul: 100,000 + 80,000*k (much more expensive)
Input must be a multiple of 192 bytes. Each pair consists of:
Offset | Length | Description
-------|--------|-------------
0 | 64 | G1 point (32-byte x, 32-byte y)
64 | 128 | G2 point (four 32-byte values: x1, x2, y1, y2)
Each 192-byte chunk represents one (G1, G2) pair.
- k pairs = 192 * k bytes
- Empty input (0 bytes) is valid and returns success (empty product = 1)
G2 point encoding: G2 points have coordinates in Fp2 = Fp[i]/(i²+1):
- x = x1 + x2*i (offset 64: x1, offset 96: x2)
- y = y1 + y2*i (offset 128: y1, offset 160: y2)
Offset | Length | Description
-------|--------|-------------
0 | 32 | 1 if pairing check passes, 0 otherwise
Total output length: 32 bytes (single word)
- Success: 0x0000…0001 (last byte = 1)
- Failure: 0x0000…0000 (all zeros)
Usage Example
import { execute, PrecompileAddress } from '@tevm/voltaire/precompiles';
import { Hardfork } from '@tevm/voltaire/primitives/Hardfork';
// Verify Groth16 zkSNARK proof
// Need to check: e(A, B) * e(alpha, beta) * e(C, delta) * e(input, gamma) = 1
// Rearranged: e(-A, B) * e(alpha, beta) * e(-C, delta) * e(input, gamma) = 1
const numPairs = 4;
const input = new Uint8Array(192 * numPairs);
// Each pair: 64-byte G1 point + 128-byte G2 point
// Points would come from actual zkSNARK proof - using placeholders for structure
// In production, these would be computed values from the proof and verification key
const gasNeeded = 45000n + 34000n * BigInt(numPairs);
const result = execute(
PrecompileAddress.BN254_PAIRING,
input,
gasNeeded,
Hardfork.CANCUN
);
if (result.success && result.output[31] === 1) {
console.log('Proof verified!');
} else {
console.log('Proof invalid');
}
console.log('Gas used:', result.gasUsed);
Error Conditions
- Out of gas
- Input length not multiple of 192
- G1 point not on curve
- G2 point not on curve
- Coordinate >= field modulus
- Invalid G2 point encoding
Failures return error (not false). Only valid inputs that fail the pairing check return false (32 zero bytes).
Use Cases
Production Applications:
-
Tornado Cash: Privacy-preserving Ethereum transactions using Groth16 proofs. Each withdrawal verifies a pairing check proving knowledge of a deposit without revealing which one (181,000 gas).
-
zk-Rollups: Layer 2 scaling solutions verify validity proofs on L1:
- zkSync Era: Uses PLONK (different proof system, but same curve)
- Polygon zkEVM: Groth16 verification for batches of thousands of transactions
- Scroll: zkEVM using different proof systems but BN254 pairing primitives
-
Semaphore: Anonymous signaling and voting. Proves “I’m in this group” without revealing identity. Used by privacy protocols and DAO voting systems.
-
Aztec Protocol: Privacy-preserving smart contracts on Ethereum. Each private transaction includes zkSNARK proof verified via pairing.
Why Pairing Instead of Pure Software?
Computing a BN254 pairing in EVM bytecode would cost millions of gas. The precompile uses optimized native code (via arkworks-rs) and reduces cost by 99%+. Without this precompile, zkSNARKs on Ethereum would be economically infeasible.
BLS Signatures (Historical): Early BLS signature schemes used BN254, but modern implementations prefer BLS12-381 (see precompiles 0x0a-0x0d) for better security margins.
Implementation Details
- Zig: Uses arkworks-rs via Rust FFI for optimal pairing performance
- TypeScript: Wraps BN254 crypto module pairing implementation
- Integration: Most complex of BN254 operations, uses Miller loop + final exponentiation
- Algorithm: Optimal Ate pairing on BN254
- Optimization: Multi-pairing optimization (Miller loop shared across pairs)
Mathematical Background
What is a Pairing?
A pairing is a bilinear map: e: G1 × G2 → GT
Key properties:
- Bilinearity:
e(aP, bQ) = e(P, Q)^(ab) = e(bP, aQ) for all scalars a, b
- Non-degeneracy:
e(G1_generator, G2_generator) ≠ 1
- Computability: Efficiently computable (using Miller loop + final exponentiation)
Why This Enables zkSNARKs:
The bilinear property lets verifiers check polynomial equations without knowing the polynomial coefficients:
- Prover commits to polynomial:
C = p(τ) * G1 (where τ is trusted setup secret)
- Verifier checks relationships:
e(C, G2) = e(proof, verifier_key)
- If equation holds, proof is valid - but verifier never learns τ or polynomial coefficients
This is why a trusted setup is needed: someone generates τ and computes powers of τ, then deletes τ. As long as one person in the ceremony is honest, the system is secure.
BN254 Curve Details:
- Prime field: 254-bit prime
p = 21888242871839275222246405745257275088696311157297823662689037894645226208583
- Embedding degree: 12 (pairing uses degree-12 extension field)
- Security: ~100-bit security level (approximately equivalent to 2048-bit RSA)
- Groups: G1 over Fp, G2 over Fp2, GT in Fp12
Groth16 zkSNARK Verification
Groth16 is the most widely used zkSNARK system. A typical proof consists of three G1 points (A, B, C), and verification checks:
e(A, B) * e(alpha, beta) * e(C, delta) * e(public_inputs, gamma) = 1
Rearranging for implementation (using negation to avoid inversions):
e(-A, B) * e(alpha, beta) * e(-C, delta) * e(public_inputs, gamma) = 1
Verification key elements:
alpha, beta, delta, gamma: Points from trusted setup
public_inputs: Derived from circuit public inputs and verification key
Gas cost for Groth16: 45000 + 34000*4 = 181,000 gas
Real-world example: Tornado Cash uses Groth16 to prove “I know a secret that was deposited” without revealing which deposit. The circuit has ~2,000 constraints, proving knowledge of a Merkle path in the deposit tree.
Gas Cost Comparison
| Operation | Pre-Istanbul | Istanbul | Improvement |
|---|
| 1 pair | 180,000 | 79,000 | 56% reduction |
| 2 pairs | 260,000 | 113,000 | 57% reduction |
| 4 pairs (Groth16) | 420,000 | 181,000 | 57% reduction |
Test Vectors
From official Ethereum test suite:
// Vector 1: Empty input (identity check)
// Empty product of pairings should equal 1 (success)
const input1 = new Uint8Array(0);
const result1 = execute(PrecompileAddress.BN254_PAIRING, input1, 50000n, Hardfork.CANCUN);
// result1.output[31] === 1
// result1.gasUsed === 45000
// Vector 2: Valid pairing with generators
// e(G1, G2) where G1 and G2 are curve generators
const input2 = new Uint8Array(192);
// G1 generator (x, y):
input2.set(hexToBytes('0000000000000000000000000000000000000000000000000000000000000001'), 0);
input2.set(hexToBytes('0000000000000000000000000000000000000000000000000000000000000002'), 32);
// G2 generator (x1, x2, y1, y2):
input2.set(hexToBytes('1800deef121f1e76426a00665e5c4479674322d4f75edadd46debd5cd992f6ed'), 64);
input2.set(hexToBytes('198e9393920d483a7260bfb731fb5d25f1aa493335a9e71297e485b7aef312c2'), 96);
input2.set(hexToBytes('12c85ea5db8c6deb4aab71808dcb408fe3d1e7690c43d37b4ce6cc0166fa7daa'), 128);
input2.set(hexToBytes('090689d0585ff075ec9e99ad690c3395bc4b313370b38ef355acdadcd122975b'), 160);
const result2 = execute(PrecompileAddress.BN254_PAIRING, input2, 100000n, Hardfork.CANCUN);
// result2.output[31] === 1
// result2.gasUsed === 79000
// Vector 3: Invalid pairing (should return 0)
// e(G1, G2) * e(G1, G2) = e(G1, G2)^2 ≠ 1
const input3 = new Uint8Array(384);
input3.set(input2, 0); // First pair
input3.set(input2, 192); // Second pair (duplicate)
const result3 = execute(PrecompileAddress.BN254_PAIRING, input3, 150000n, Hardfork.CANCUN);
// result3.output[31] === 0 (pairing check fails)
// result3.gasUsed === 113000
// Vector 4: Groth16-style verification (4 pairs)
// This simulates a real zkSNARK proof verification
const input4 = new Uint8Array(768);
// ... (fill with actual proof verification pairs)
const result4 = execute(PrecompileAddress.BN254_PAIRING, input4, 200000n, Hardfork.CANCUN);
// result4.gasUsed === 181000